
OTIC FILE COPY
Foim Appmovd

MENTATION PAGE 0MB No. 0704-0188

d to aerage 1 hour per response. IkbidkV the timefo r rA-ng Instuclon. searc lng existing dlata souces. geaing
ollntorm o m d xments regdln this aurdefi stimate oranyotherapect ~his ooIW~odlftanl. Inddin

4 i 1vices. Dhectorae for Informtalon Operatlo and Reports. 1215Jefferson Davis Highway. Suite 1204, AdInglon. VA 22202-4302.AD-A224 153 0704-88). Was igon, 0C 20M03.
2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

July 1990 professional paper

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

SUPERCONCURRENT PROCESSING-A DYNAMIC APPROACH TO PE: 0602234N
HETEROGENEOUS PARALLELISM WU: DN300086

B. AUTHOR(S) PR: ECB2
R. F. Freund

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Ocean Systems Center
San Diego, CA 92152-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. 1 NSORING/MONITORING-I- = ICY RIEPORT NUMBER

Naval Ocean Systems Center D T I R

Block Programs - ,'San Diego, CA 92152-5000 E E
11. SUPPLEMENTARY NOTES J L16 1990

_a- OJSTRIBUTION/AVAILABILITY STATEMENT '[J '-.L 4STIBUTMAVJLAMTY TATEENT12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (MawmvnlWf0 wordS)

This p4ar describes an approach to finding and using n optimal, heterogeneous suite of processors to solve
supercomputing problems. This technique, called superconcur ncy, currently works best when the computational
requirements are diverse and significant portions of the code ae not tightly-coupled. It is also dependent on new methods of
benchmarking and code profiling, as well as eventual use of hnques for intelligent management of the selected
superconcurrent suite. This latter technique, combined with anticipated bandwidth increases, will permit much more closely
coupled code portions to be distributed on the heterogeneous suite. This paper also presents theoretical and empirical results
to show SIMD architectures are faster than vector architectures for processing long vectors. Implications for future
architectures and distributed heterogeneous processing in general are also discussed. " , ,

Published in IEEE Proceedigs, February 1990.
/

14. SUBXJECT TERMS 15. NUMBER OP PAGES

massive parallel processing.
high performance computilg 1,. PRICE CODE

17. SECURITY CLASSIFICATION I1. SECURITY CLASSIFICATION 10. SECURITY CLASSIFCATION 20 UMITATION OF ABSTRACT
OF REPORT Or THIS PAGE OP ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAME AS ABSTRACT

NSN 7540-01-280-0 Sandard form 2W

SUPERCONCURRENT PROCESSING -

A DYNAMIC APPROACH TO HETEROGENEOUS PARALLELISM

Richard F. Freund, Naval Ocean Systems Center

ABSTRACT. This paper describes an approach to finding and using an optimal, hetereogeneous suite of processors to
solve supercomputing problems. This technique, called superconcurrency, currently works best when the computational
requirements are diverse and significant portions of the code are not tightly-coupled. It is also dependent on new methods
of benchmarking and code profiling, as well as eventual use of Al techniques for intelligent management of the selected
superconcurrent suite. This latter technique, combined with anticipated bandwidth increases, will permit much more
closely coupled code portions to be distributed on the heterogeneous suite. This paper also presents theoretical and
empirical results to show SIMD architectures are faster than vector architectures for processing long vectors. Implications
for future architectures and distributed heterogeneous processing in general are also discussed.

KEYWORDS. SIMD, vector processing, distributed processing, heterogeneous processing, superconcurrency, vecops,
supercomputing, code profiling, benchmarking, optimal selection, Amdahls Law

1. BACKGROUND
1.1. INTRODUCTION There is a growing consensus [11 among supercomputer scientists that super-speed
computers of the future will be parallel processors, since the traditional vector processors are only able to pipeline out one
or a few results per cycle. Parallel processors are potentially able to have hundreds or thousands of execution streams
going at once. In earlier years, the clock cycle speed of supercomputers was so much faster than parallel processors and
the parallel machines were in such an experimental state that it still made sense to look to vector processing for practical
supercomputing. Both of those conditions are changed today, providing computational scientists with the occasion to

-:r to realize the full power of parallel processing. As we start to do this, however, we realize that while vector
upne~sors are basically all very similar to each other, parallel architectures present a wide variety of types. It seems quite

kely that one of these types will be ideal for a wide range of problems. For that reason, a number of computational
scientists are looking at distributed heterogeneous processing as a potential solution. Superconcurrency is
one approach to this form of computing.

1.2. VECTOR ARCHITECTURES Vector architectures, such as the CRAY XMP (which will be the primary
example in this paper), are primarily means for the hardware to support pipeining (Freund [2]). Suppose we wish to add a
set of {xi} to a set of {yi}, i.e., {zi}= {xi}+ {Yi1. We refer to Fig 1.1 to see how this is normally done on a vector
machine. The {xi)are loaded into one vector register (called V0 here) and the {Yi} into another (V1) vector register.
These operands are then fed through the floating point add unit and the { zi } are then pipelined out at the rate of one per
clock cycle.

Most vector architectures are able to get some additional concurrency or parallelism by having some of
the features of.(a) two or three functional units in the pipeline stream (called chaining), (b) independcra cxecuticn -f .hc.
scalar portion of the processor, and (c) several copies of the scalar/vector CPU. Still the potential concurrency available in
vector machines is quite limited and unlikely ever to have hundreds, much less thousands of execution streams going at
once.

There are several idosyncrasies characteristic of vector machines. For example, methods of organizing
memory are such that often stepping through memory (called stride) in units greater than one (as aefined by the reverse
lexicographic order implicit in FORTRAN) can result in significant performance degradation through memory conflicts.
The author demonstrated several years ago a typical result, Fig 1.2., in which it is clear that the greater the power of 2 in
the stride, the worse the performance (due to bank and section conflicts).

Another idiosyncrasy concerns linear algebra. Let us examine chaining in a basic linear algebra
operation, matrix times a vector. Let XT = (X(1),X(2) .. X(N)) be a point in N-space and A = (A(IJ)) be the M by N
matrix mapping X into M-space, i.e., AX = Y = (Y(1),Y(2) . Y.. y(M))T

90 o- i 047

x Yi
Xo Yo

V 0 1lYV .. L,:.. . . .

DsTKC T,',

~By

0(-'0 D is trib u ic I

Avail :bility rCdes

Avail arid or
Dist Special

XL-1 YL-1 I

zj} at rate of one per cycle

Fig 1.1 Vector Pipelining of zi xi + Yi

100

MFLOPS

50-

I I 21 I I I I I

8 16 24 32 40 48 56 64

STRIDE CLASSES

Fig 1.2 Memory Contention Effects on Pipelining of zi = r*xi + Yi

A(1,1), A(1,2) , A(1,N) X(1) Y(2)

A(M,1), A(M,2), . , A(M,N) X(N) Y(M)

where Y(I) = A(I,J) * X(J).

Algorithmically we can think of this in two ways: (a) as N updates to the elements of Y
by successively adding in terms A(I,J)*X(J), commonly called SAXPY, or (b) as M dot products of rows of A with the
column vector of X aka SDOT. Both are written in FORTRAN below (assuming initialization of Y to 0):

DO 1 J=1,N
SAXPY DO 1 I=I,M

I Y(I) = Y(I) + A(IJ)*X(J)

DO 1 I=1,M
SDOT DO 1 J=IN

1 Y(1) = Y(1) + A(1,J)*X(J)

While the SDOT method corresponds to the way we have normally been taught to think
theoretically of linear algebra operations, SAXPY is the method that works better on most vector architectures because of
the nature of the hardware (essentially, in this case, the inability to add a vector to a scalar).

One of the consequences of these idiosyncrasies is the way people think about performing and
benchmarking code for super-speed architectures. Most of the standard analysis tools, e.g., LINPACK, [3] use code
strongly configured to implement SAXPY and avoid non-unit FORTRAN stride. However these rules of thumb, learned
from vector architectures do not necessarily apply to parallel processors. NOSC's Superconcurrency Research Team (SRT)
has striking examples where natural, parallel implemeittation of fundamental algorithms yields dramatic performance
increases over traditional vector implementations (and associated limitations).

1.3. TYPES OF PARALLELISM One of the fundamental facts of parallel processing is the wide variety of
types. There are a number of variant factors, e.g., memory organization (distributed, global, hierarchical, etc.) or
processor interconnect scheme (bus, mesh, hypercube, etc.). However the most basic distinction is whether the processors
execute the same instruction on multiple data (SIMD) or multiple instructions on multiple data (MIMD). Fig 1.3. below
summarizes these types of paralellism compared to vector processing, with asymptotic performance factors. Since the
time to execute on each MIMD processor often cannot be determined until run-time, there is some probability that many
processors may have to wait for one to finish. Naturally this probability tends to increase as the number of processors
increase, so that MIMD machines usually do not have thousands of processors. On the other hand each processor in a
SIMD machine is usually a simple, e.g., bit-slice, processor (sometimes with an associated coprocessor) so that the
execution time for any one processor is long. Thus SIMD machines do well only when the number of different data
streams is quite large, i.e., in the thousands. The variety of parallel processors is also increased by such features as very
Iong instruction word (VLlW) design, data-flow technology, and the fact that many designs are hybrids incorporating
several different features. The fundamental result is that most parallel architectures are a good fit for some problems and a
poor fit for others. The consequence is that an optimal method (to be made more precise in section 3. below) to compute
a wide diversity of computational types is with a corresponding variety of architectures, i.e., the distributed heterogeneous
processing approach mentioned in the introduction.

MIMD
(Multiple Instruction, Multiple Data),
e.g., ENCORE

T = O(LONGEST)

SIMD
(Single Instruction, Multiple Data)

ECTOR e.g., CONNECTION MACHINE, DAP

e.g. CRAY, STARDENT Orthogonal Vector

T = O(N)

T = O(1) To Multiple Processor

Fig 1.3 Vector, SIMD, and MIMD Architectures

2. SUPERCONCURRENCY
2.1. DEFINITION

Superconcurrency is a general technique for matching and managing optimally configured suites of super-speed
processors. In particular this paper shows a general method for choosing the most powerful suite of hetcrogencous
parallel and vector supercomputers for a given problem set, subject to a fixed constraint, such as cost. The dual problem
could find a minimal cost configuration for a fixed speed requirement. Thus the Optimal Selection Theory is a
mathematical program for which one wishes to minimize the total time spent on the sum of all code subsegments. The
theory is mathematically dependent on a new methodology of code profiling and a new methodology of analytical
benchmarking. The intent is to use this technique to provide supercomputing power for Naval Command and Control
(C2) problems, however this paradigm should work for many classes of supercomputing problems. The basic result is
that for a computational problem that has a diverse set of computational types, not all tightly-coupled, the optimal
solution is a heterogeneous suite of parallel and vector processors rather than a single supercomputing architecture. This
solution is called superconcurrency both because it is an approach to supercomputing and because it concurrently uses
concurrent (vector and parallel) processors. Ercegovac [41 has recently looked at the feasibility of a suite of heterogeneous
processors to solve supercomputing problems. Resnikoff [5] and Kamen [6] have examined the cost-effectiveness of
supercomputers (one generally finds the smaller mini-supers to be more cost-effective than the largest-sized machines).
Bokhari [7] has investigated partitioning problems among various types of processors. There are several reasons for
partitioning. First many large codes have diverse computational types. Second, the various super-speed parallel and
vector processors have quite different performance profiles on these types, often amounting to several orders of magnitude.
It i; a commonplace observation and a corollary of Amdahl's Law [81 that any single type of supercomputer, often spends
most of its time computing code types for which it is poorly designed. If we could configure our processor suite so that

each processor could spend almost all its time on code for which it is well designed, the overall increase in speed could be
orders of magnitude over what is now achieved by conventional supercomputing.

2.2. REASONS FOR SUPERCONCURRENCY One way of understanding the reasons for superconcurrency
is to look at Amdahl's Law. Basically this says that the overall rate at which a machine will compute an overall code or
set of codes is determined by the sum of the inverses of the times on each subportion. The paradoxical consequence of
this is that, in the face of diverse computation requirements, a single machine asked to excute all the code will spend
most of Its time on the portions of code for which It Is not well designed, as illustrated in fig 2.1
below. The superconcurrency approach is also shown here in which we try to identify and use a suite of machines wherein
each is used primarily to compute code types for which it is well-suited, and conversely each portion of code is matched to
an appropriate architecture.

Code Type Distribution in Large
Application Suite on Baseline System

Vector MIMD SIMD SCALAR S P

30% 15% 20% 25% 10%

DISTRIBUTED
HETEROGENEOUS
SUITE

1% 1%

SINGLE VECTOR
SUPERCOMPUTER 1%1% 1%

..;; .., 20 TIMES FASTER
• .'.'..... ,.THAN BASELINE

1% 10% 15% 18% 6%

2 TIMES FASTER
THAN BASELINE

Fig. 2.1. Code Profiling and Machine Matching

2.3. BENCHMARKING AND CODE PROFILING As discussed earlier, the basic approach of this paper is
contingent upon breaking down the overall code into groups of segments within which the processing requirements are the
same or homogeneous. The segments of homogeneous type are assigned to optimal processors for that type. Before that
can be done, it is necessary to take two benchmarking type steps. The first, called code-type profiling is a code specific
function to identify the "natural" types of code that are acttl1y present and group the code segments by type. Types that
might be identified include vectorizable decomposable, vectorizable non-decomposable, fine/coarse-grain parallel,
SIMD/IIMD parallel, scalar, special purpose, e.g., FFT or specialized sorting algorithm, etc. The second step, called
analytical benchmarking is an analysis of how the available processors perform on the identified types, i.e., this identifies
processors that ae appropriate solutions for each code type. Thus it is more analytical than some previous techniques that
simply looked at the overall result of running a processor on an entire benchmark code or set of loops (without any real

analysis of how the myriad of relevant factors contributed). However it should be pointed out that recent research by
Dongarra on LINPACK provides some insight to the processes involved. Both code profiling and analytical
benchmarking are now being undertaken by the Superconcurrency Research Team (SRT) at the Naval Ocean Systems
Center (NOSC). Our initial research at Proftling/Benchmarking was directed at several large Naval C2 problems and a
suite of potentially matching mini-supers/parallel processors (including the Connection Machine, DAP, Ardent, Encore,
Butterfly, MultiFlow, Aspen, and Convex). Most of the C2 applications we have looked at so far have been relatively
loosely-coupled and we have found it feasible to break them up (manually) into homogeneous portions and assign them to
appropriate processors. From the processor (benchmarking) point of view, our most interesting result to date is how
consistently the long vector problems are much better done on SIMD (Connection Machine or DAP) processors rather
than vector processors.

OLD WAY NEW WAY
MACHINES

A B z MACHINES

P 1
R 2 CODE
O U TYPES Time for machine i

G on code type I
R
AM N

P1i
R
0 211
G
R
A
M N

Fig. 2.2. Analytical Benchmarking

2.4. SIMDIVECTOR CROSSOVERS SIMD and vector architectures perform abstractly the same type of
computation, since vectorization pipelines different data through the same functional unit. I call SIMD orthogonal
vectorization (since the operations are done on a broad front, one deep, as opposed to a vector architecture which is N deep,
but only one wide). Let us consider an elementary scientific calculation that has traditionally been done on vector
machines, e.g., (zi)- {xi}+ (yi} , i =1,. . . , N. The x, y, and z variables are real numbers and N is typically
some large integer in the hundreds or even thousands. Fig. 1.1 shows how this is normally done on a vector machine.

The results are computed in time 0 (N), or more precisely the time is bounded below by N * Tv, where Tv is the
clock cycle time of the particular vector machine in question.

A SIMD processor (Single Instruction Multiple Data), such as the Connection Machine or AMvT DAP, typically
has thousands of simple processors all executing the same instruction stream in lockstep. Figure 2.3. shows a method by

which the same calculation could be computed on a SIMI) architecture. Namely, V i we load xi , and Yi into processor
i. Then we issue the same instruction, e.g., a floating point add, to all processors simultaneously. The add takes much
longer on the simple SIMD processor than a comparable singae add instruction on a vector machine. However, since all

processors are simultaneously computing the same instruction, the results are computed in time 0 (1), i.e, it takes the
same time for any N -< M, where M is the number of processors in the SIMD machine. Thus the time is bounded

below by s, where 'r. is the time needed for one of the SIMD processors to compute a floating point add. The

implications of this are clear. If N is large enough such that N * Tv > Ts then that total computation is performed
faster on the SIMD than on the vector machine. The value of N for which the SIMD machine overtakes the vector

machine, i.e., the least N 3 N > ' s / Tv is called the crossover point, or x-point hereafter. Freund, Gherrity,
and Kamen [9) computed x-points for several operations oriented around linear algebra computations (Lubeck [10]). One
of these is V = V + V, e.g. Z(I) = X(1) + Y(I), I = 1,..., N. The results of this computation are shown in
Figure 2.4. We feel that the results of this experiment, run on a CRAY XMP, Convex 210,4K & 8K Connection
Machines (with floating point coprocessor), 1K & 4K DAP, and 4K DAP (simulated with coprocessors) support the
conclusions that:

a. S1MD architectures are potentially faster than vector architectures for long vector problems.
b. The DAP appears to be a more efficient SIMI) architecture than the Connection Machine

Until recently, vector problems of lengths in the thousands have not been usual. With increasingly more
difficult problems of the future, e.g., in moving from 2D to 3D simulations, computational scientists may well need the
long-vector capability of SIMD architectures.

INDIVIDUAL SIMD PROCESSORS, {Pj}

V0 P, P2 PNM1 PN aM-1

XO IrX XNIl 0_____ 1 _____
YoI yl.Y 1 1 0

70 1 72 Z- 1 0 0

Fig 2.3. SIMD, "ORTHOGONAL VECTORIZATION" OF z i = x i + yi

3. OPTIMAL SELECTION THEORY or STATIC OPTIMIZATION The Optimal Selection Theory is a
mathematical program for which one wishes to minimize the total time spent on the sum of all code subsegments subject
to a fixed cost constraint. The method is mathematically dependent on a new methodology of code profiling of the
problem sets being implemented and a new methodology of analytical benchmarking. The full formulation of this theory
is given by Freund [11].

3.1. MATHEMATICAL FORMULATION We can state the basic problem as a linear (actually integer) program.
We want to get the most power we can, given some overall cost constraint. More mathematically we wish to maximize

the power (or speed) function, P. We do this by minimizing a time function, T, giving the time taken on a code, so

1000.00

100.00-I.F.OPS, Or- i. -Ci,

10.00

10 100 1000 10000 100000 1000000

IzVector Si1

,,, 4K CM2 - CRAY XMP - 1K DAP - 4K DAP w/co
SK CM2 - CONVEX C210 -16- 4K DAP

Fig 2.4. SIMDIVector Comparisons for zi = xi + Yi

that P = T 1. T is defined on the two-variable range, X x S. X is the set of potential machine choices,

X = Ix} where the xi are candidate architectures. S is a non-overlapping set of all code subsegments, Sj; thus

S = U sj and Sj r Sk = 0 if j # k. The choice of the Sj defines the code profiling and analytical

benchmarldng problem. We denote C as the overall cost constraint, [ci} as the set of costs corresponding to the [{xi

and { ti j as the set of corresponding time functions, i.e., ti(Sj) is the time taken by machine xi on code segment Sj.

Let I denote the set of all possible indices of one machine type per segment with Vi denoting the number of such
machines used per segment. Let Vi be the number of machines of type i (which may be 0 if machine Xi not in the
indexed configuration). Then the mathematical programming problem can be stated as:

(3.1) MImilZE T(xi, Sj) = E tis
vii I, j

such that Vi Ci -C

3.2 EXAMPLE Let us consider the following example. Suppose the code to be 50% vectorizable (35% non-
decomposable, i.e, only one vector machine at a time can run it, and 15% decomposable), 20% suitable for SrMD, 20%
MIMD, and 10% inherently scalar. We shall assume that each type of machine only achieves scalar speed on code for
which it is = designed, e.g., a vector machine will be assumed to get only scalar speed on parallel code. In Table 3.1.

below we denote by (X the speed up each machine achieves on portions of code for which it is best suited. The V's are
vector machines, the S's SIMD, the M's MIMD, and the Sc a scalar machine. Suppose our overall cost constraint is
$4M.

VI V2 V3 S1 S 2 M M 2 Sc

C (in $M) 4 1 0.3 1 0.3 1 0.3 0.25

(X 8 5 3 15 6 4 2 2

Table 3.1. Optimal Selection Theory Example

We can reformulate eq. 3.1 above as:

N M
(3.2) " Y" != ' I Vi tij

j=1 i=1

where N = # different code types, pj = % of code type j, vi = total # processors for code type i. M = # processor types for
code type j, and tkj = time for processor i on code type j

In this computable form, we see the traditional vector supercomputer solution of 1 V1 has P = 4.00. However the multi-
machine solution of 1 V2, 3 V3, I S1, and I M1 , in which no one machine is a traditonal supercomputer, has a greater

power function, P = 5.14. This is true in spite of the fact that 50% of the code was assumed
vectorizable.

4. DINS OR DYNAMIC OPTIMIZATION Distributed Intelligent Network System (DINS) - One of the most
active current research areas of the NOSC Superconcurrency Research Team (SRT) has been the development of the DINS
concept. DINS will be a reasoning system that uses information from Code Profiling, Analytical Benchmarking, and
network bandwidth to optimally manage a network of heterogeneous, high-performance, concurrent processors and assign
portions of code to appropriate processors. In a general sense, this is similar to current research in load balancing and
priority assignment. However the information to be used will be the three sources mentioned above with the primary aim
of optimal matching code portions to processors rather than (the secondary) factors of load balancing and priority
assignment. Since DINS will reason about processors actually available to it, this means we can achieve configuration
control at different sites even though there may be a different superconcurrent suite at each. Similarly DINS will continue
to function and assign a second best processor if a first choice is unavailable or down. Thus DNS is robust and
survivable. Likewise it is compatible with evolutionary development; when a new processor is introduced because of

changing technology, we simply replace the old benchmarking data with the new. The features of robusmess,
configuration control, survivability, tailorability, and evolutionary development are essential for Naval C2 problems. We
call DINS dynamic optimization since it dynamically tasks in an optimal way the backend suite of heterogeneous,
superconcurrent processors that were chosen from the Optimal Selection Theory.

4.1. APPROACH We plan to use artificial intelligence and compiler writing techniques to build the DINS using an
existing off-the-shelf high-level distributed operating system, e.g., CRONUS (BBN product) and MACH (DARPA-
sponsored Carnegie Mellon product). We will then use the ongoing results of analytically benchmarking code profile
types on a variety of machines for automating the partitioning of complex codes so that homogeneous portions can be
sent to the best suited processors. Our supeconcurrency efforts will also draw on the developing taxonomy of code profile
'ypes with similar processing requirements, as well as our current work on the code profile types to find out what
machines are ideal. Some code portions may be complex mixes of simple codes which are not easily decomposable
because of, for example, unusual data dependencies in the algoritms.

4.2. EXAMPLE An example of how DINS would work can be seen from the SIMD/Vector crossover point study.
DINS would have matrices of the x-points for the various vector and SIMD machines available on its network. A vector
problem that was short would be done on a traditional vector machine; a long one on a SIMD machine. The kind of
reasoning DINS would do would be similar in general nature to the reasoning involved in the now classical problem of
load-balancing, but the data it would reason about would be the performance matrices determining optimal machine/code
portion matching. Load balancing could, in fact, be a secondary consideration, but only secondary, since the performance
increases one gets from this are typically much less than from superconcurrent matching.

4.3. EXPECTED RESULTS The firdings of this project will enable us to assess the potential for improvements
in performance from a heterogeneous mix of concurrent processors. Based on the findings of our Optimal Selection
Theory, we expect that lower cost multi-machine solutions will have speedups better than what can be achieved with even
"iic ,a,, powerful single super-computer. With an intelligent system to distribute tasks among multiple processors
having disparate capabilities based on the code type, two to three orders of magnitude of speedup could be achieved. The
intelligent system for distributing appropriate code should prevent problems of low vectorization fractions for the vector
.... -nues. We expect the various parallel and supercomputer machines to come closer to their peak performance ratings
when they run code for which they are optimal. Another of the advantages of constructing a system which can access
multiple processors as needed is that new computing technologies can be seamlessly incorporated into the system as they
become available. The end users of the system need not learn any new interfaces to take advantage of improvements in
technology. We can also expect fault tolerance from the ability to choose a second-best processor when one of the
machines is unavailable, implying robustness. This reasoning about what is locally and currently available also implies
automatic configuration control since DINS can run transparently at different sites with different back-end
supercomputers. This also implies graceful evolutionary acquisition, as well as survivability and tailorability, all
important consideration for Navy C2 environments.

5. FEASIBILITY An important issue in Superconcurrency is the feasibility of switching machines for various codes
or subcodes in our applications suite. In this section we look at several aspects of this, and mention related research.

5.1. LEVELS Superconcurrency could be conducted at three distinct levels. The coarsest or highest level would be
one in which we optimally match distinct whole codes to separate machines. The medium level granularity would
correspond to sending different subroutines or largely autonomous subpotions to optimal processors. The finest or
lowest level would be the one at which we break up tightly-coupled portions of code in order to optimally match them to
hardware. Clearly the coarsest level is easiest to implement, but yields the least performance, whereas the lowest level
granularity is hardest, but gives the best results. Clearly a fundamental issue is the interprocessor bandwidths.
Fortunately ranges exceeding lGbit and beyond should be readily achievable in the near future.

" ROBUSTrcSS

SUN • CONFIGURATION CONTROL

LAN • SURVIVABILITY

0 TAILORABLE

• EVOLUTIONARY ACQUISITION

Distributed Intelligent
Network System (DINS)

Back-end Supercomputing Suite
Fig 4.1. DINS HIERARCHY

5.2. BANDWIDTHS AND MIXED TYPES Tightly and medium-coupled portions of code will be more difficult
to break up and assign to different processors and the ability to do this will rest in part on the bandwidths of the storage
devices and distributed network used. In these cases, it may be necessary to assign mixed type code to the best processor
available. Superconcurrent implementations will attempt to work at the lowest level compatible with the bandwidths
available at any given site. Put another way, eq. 3.1 above will actually use t'i~j where the t' reflect not only the actual
compute time for processor i on code type j, but the requried interprocessor communication time:

N M
(5.1) T = I v, t'1,j

j=1 i=l

5.3. CONCURRENT SUPERCOMPUTING Dr. Paul Messina [12] of JPL/CalTech will be implementing
distributed heterogeneous processing using specialized computational resources at CalTech, JPL, Los Alamcs National
Laboratory, San Diego Supercomputer Center, and Argonne National Laboratoy. He should be able to achieve at least
medium granularity of code distribution, since he will be operating with an 800.1T network.

5.4. PASM Fineberg, Casavant, and Siegel [13] of Purdue have constructed a special prototype machine, PASM,
able to compute in both SlIVID and VIMD mode. This enables them to study the performance of various algorithms on
different architectural configuration. In addition, PASM is able to switch modes in a single cycle, so that study of mixed-
mode computation is possible. In particular, this machine makes it possible to study superconcurrercy issues at the
lowest possible level, even matching modes to individual lines of code!

5.5. SOFTWARE and ALGORITHMS Methodologies for developing parallel algorithms and the associated
software issues, are not addressed here. However these are key research areas at many laboratories. SRTs current efforts
in this area, including the use of parallel ADA, will be available as superconcurrency is implemented for Navy C2 centers.

6. IMPLICATIONS
6.1. C2 OR RESOURCE MANAGMENT Superconcurrency is a technique now being tested to support Navy
Command and Control (C2) problems. Command and Control is somewhat similar to resource managment in the civilian
world. The aim of the C2 centers is to provide cummanders and their staffs with tools to plan and allocate resources.
Superconcurrency would fit into a generic center in the manner shown in Fig. 6.1. Different kinds of users, Operations,
Intelligence, etc. would link into a C2 environment that would have available a variety of general purpose resources, e.g.,
file servers, general purpose computers, etc. Part of the C2 center would be DINS that would take compute-intensive
work and optimally allocate it to the variety of back-end super-speed processors available at the given site.

cOMM SERVER]
OPS FILE SERVERS

INTEL BU

LOG"w

PL NS l !! ' !ii',i~i !,'i~~ !,'l I ISPECIAL
PLANS IwECT°0,
LA S PARALLEL DBI

Fig 6.1. DINS Role in Command Center

6.2. SUPERCONCURRENCY POWER In order to be effective in a Navy C2 environment, Superconcurrency
needs not just supply more computational power in the form of speed, but more generally it must supply a mix of speed,
complexity (model fidelity), and multiplicity (what-ifs), as shown in Fig. 6.2. Furthermore, this mix must be easy to
define at run-time by the user. The NOSC SRT has already demonstrated increases in speed of three orders of magnitude
for some C2 models (by fitting them to the right processor type). The next step is to support, through DINS, the required
power in the more general sense.

6.3. SUPERCONCURRENCY The underlying premise of this paper is that many codes, and particularly many
sets of codes, have a heterogeneous set of computational types. The solution, called superconcurrency, is nothing more
than the commonsensical approach of selecting a heterogeneous suite of processors that most effectively addresses this
diverse set of requirements. The solution is expressed as a mathematical program with all that implies about the existence
of an optimal solution. This approach requires a more analytical way of benchmarking and code profiling in order to
analyze the power of various processors on atomic portions of code. Superconcurrency has the potential of achieving
orders of magnitude greater speed over conventional supercomputers if the code profiling techniques show the overall
application to be quite diverse in its requirements. The future addition of a Distributed Intelligent Network System to
manage a superconcurrent suite of vector and parallel processors offers the potential of robustness, configuration control,
survivability, tailorability, and evolutionary development.

Elapsed Time on Current System

_,*__ Elapsed Time withl,000-fold
Power Increase Translated
into Speed Only

1,000-FOLD Power Increase Translated into:
COMPLEXITY MULTIPLICITY SPEED

10 "What If"
Iterations ""'''

Models 10 Times Each Version
More Complex 10 Times Faster

Fig 6.2. Superconcurrency Power Applied to Baseline Model

ACKNOWLEDGEMENTS
This research was supported by the Office of Naval Technology, under the Navy High Performance Computing

Initiative, and the Naval Ocean Systems Center.

REFERENCES
[1] J. WORLTON, Toward a Science of Parallel Computation, Computational Mechanics, vol 75
[2] R. F. FREUND, Linear Algebra on a CRAY XMP, Private Communication
[3] J.J. Dongarra, Performance of Various Computers Using Standard Linear Equations Software in a Fortran
Environment, Argonne National Laboratory Technical Memorandum No 23, Feb 12, 1989
[4] M. ERCEGOVAC, Heterogeneity in Supercomputer Architectures, Parallel Computing, vol 7 (1988), pp. 367-372.
[5) H. L. RESNIKOFF, Cost-Effectiveness of Concurrent Supercomputers, Journal of Supercomputing, vol 1 (1987),
pp. 231-262.

(6] R. B. KAMEN, Comparisons of Supercomputer Costs and Peak Performance, Private Communication, May 1989
[7] S. H. BOKHARI, Partitioning Problems in Parallel, Pipelined, and Distributed Computing, IEEE Transactions on
Computers, vol 37 (1988), pp. 48-57.
(8] G. M. AMDAHL, Validity of the Single Processor Approach to Achieving Large Scale Computing Capability,
Proc. AFIPS Comput. Conf., Vol 30, 1967
[9] R. F. FREUND, M. J. GHERRITY, R. B. KAMEN, SIMD/Vector Crossover Points, to be published
[10] 0. M. LUBECK, Supercomputer Performance: The Theory, Practice, and Results, Adv. in Computers, 27,
309(1988)
[11] R. F. FREUND, Optimal Selection Theory for Superconcurrency, Proceedings of Supercomputing 89, Reno, NV
(13-17 Nov 1989)
[121 P. MESSINA, CalTech Concurrent Supercomputing, Conference notes, January, 1990
[131 S. A. FINEBERG, T. L. CASAVANT, H. J. SIEGEL, Experimental Evaluation of SIMD PE-Mask Generation and
Hybrid Mode Parallel Computing on Multi-Microprocessor Systems, Purdue University, TR-EE 88-55, July 1989

